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Abstract

An important property of an intelligent robot is to be able to determine the location of an object in

3-D space. This paper proposes a general object localization system structure, discusses some impor-

tant issues on localization and gives an overview of current available object localization algorithms

and systems. The algorithms reviewed in the paper are characterized by their feature extracting &

matching strategies, the range finding methods, the types of locatable objects and the mathematical

formulating methods.

1 Introduction

Since the early 1980's, the use of robots in industry has become increasingly popular or even crucial in

some areas. Through practice, researchers have realized that an important property of an intelligent

robot is the ability to determine the location of stationary and moving objects. For example, space

station construction, repairing, maintenance, satellite refueling, etc. have been identified as the

potential areas of applications of telerobotics systems. The availability of an efficient means of locating

objects is one of the key factors to the success of developing such systems.

Object localization has long been defined as a part of object recognition process in computer vision

research [4]. But in most instances, the emphasis of the research is on object recognition. Object

localization is only a by-product. In robotic applications, however, object localization usually is the

ultimate goal. And, it has many of its own problems to be solved such as real-time considerations,

accuracy issues, types of locatable objects, working conditions etc., which object recognition research

generally does not address. In some systems, "locate" has been defined as one of the basic indepen-

dent operations the telerobot system is to perform [27]. As a result, object localization research has

attracted increasing attention recently.

This paper will give an overview of the three-dimensional object localization problem. First, it

provides a closer examination of the problem and then proposes a general object localization systcm

structure. Some important issues of object localization and the possible implementations of key

components of the proposed object localization system are discussed and compared. A summary is

presented in the final section.

2 The Object Localization Problem

As we have mentioned, object localization is the determination of the location of an object. What

must be solved when a robot vision system is trying to locate an object? A necessary component

of every intelligent robot system is the world modeling system which stores, among other things, a

representation of all the object models that are relevant to the robot's operation and a definition of
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the sensing coordinate system. To specify an object in the world modeling system, there must exist

either an implicit or explicit coordinate system which is associated with that object.

The real problem to be solved when locating an object, therefore, is to determine the relative

location between the sensing coordinate system and the coordinate system for the object, which

is somewhat different from what the object localization means from the point of view of object

recognition. In object recognition, localization can mean a description of the location relationships
among the objects to be recognized.

The relative location of two coordinate systems can be specified in any one of the following
methods:

1. Position and orientation:

The position can be specified by three parameters, e.g., the (x,y,z) coordinates of the origin of
the object coordinate system relative to the sensing coordinate system. There are three different
representations of orientation:

• Three Eular angles _,/_, 7, or angles about the coordinate axes.

• A unit vector r and an angle 0.

• A quaternion. [22, 26]

2. A 4 × 4 homogeneous transformation matrix.

3. Dual number quaternion: [37]

This is an extension of quaternion representation in which each quantity is changed to a dual

quantity [11]. The dual quaternion has a similar interpretation as the real quaternion:
f

sin(0/2)h
cos(0/2) ]

where the vector h is a unit line vector about which the coordinate system has rotated and
translated and 0 is the dual angle of rotation and translation.

The objective of the object localization algorithm is to compute the parameters which specify the
corresponding representation.

Because there are six degrees of freedom a rigid object could have in three dimensional space
(three for position, three for orientation), six independent parameters is the minimum number to

be determined. The advantage of position/orientation representation is that it has minimum or

near minimum number of variables. But there are disadvantages. The angular representations use

trigonometric functions which are of infinite order and lead to a nonpolynomial criterion. Vectorial

representations also have singularities; when the rotation angle 0 is zero, the axis of rotation is

arbitrary. The matrix representation is linear and has no singularity problem. But the inherent

redundancy for rotation leads to a high-dimensional space constraints and will make the computation

a little harder. The dual number quaternion representation has a dimension of eight, which is a little
bit higher than the minimum but is still quite simple to compute.

In some applications, the localization problem can be simplified due to extra constraints imposed

on the object. For example, if an object is so constrained that a planar surface of the object is always
lying on a plane, the degrees of freedom of the object are reduced to three: one for the rotation and
two for the translation.

How does one solve for these position/orientation parameters if sensor data and object models are

given? Usually the computation is carried out by a matching process. That is, the object localization

algorithm will try to find a "best" transformation which will put sensed features into its corresponding
model features.

From the above description, it is not difficult to imagine that a general object localization system

should contain the following components: (1) sensing system: to provide necessary measurements;

230



Real IWorld

_ FeatureExtracting
Sensing v

Objec ]Model

Feature tMatching

Parameter

Computing

FinalResult

Figure 1: Object localization system organization

(2) world model: to represent all the objects including robot and sensors and their relationships; (3)

feature extraction: to retrieve features which is to be used in the matching process; (4) matching:

to try to pair the sensed features with corresponding model features; and (5) computing: to calculate

the transformation parameters. See Fig. 1 for the configuration.

Based on the types of sensors used in the sensing system, the sensing method can be divided

into serial sensing and parallel sensing. If the necessary sensor data is obtained through a series of

measurements, such as the case when a spot range sensor is used, it is called as serial sensing; if the

sensor data can be obtained by a single measurement, it is called as parallel sensing. In the case of

serial sensing, the whole feature extraction might go through a repeated sensing-extraction process.

The geometric features to be extracted and to be matched can be classified as low-level features and

higher-level features. Possible low-level features include points, vectors, line segments, axes, surface

patches, edges, boundaries and etc.. Possible high-level features include straight dihedrals, circular

dihedrals [9], principle directions of surface curves, minimum, maximum and mean curvatures of

surfaces, Gaussian curvatures, and etc.. Usually the lower the level of features is, the greater the

number of features to be extracted.

The matching process is the process of finding the pairings of sensed features and the model

features. Depending on the level of intelligence of the system, the matching could be done in different

ways. On the lowest level, there is no matching process at all in the system. Whenever a measurement

is taking place, either a default matching is assumed or a man-assisted matching is provided. On

telerobotics systems, for example, the teleoperator might interactively assist the model matching by

indicating with a light pen which features in the image (e.g. edges, corners) correspond to those in a

stored model [1]. On higher levels, the system Will be able to paring the features automatically. Table

1 shows some known feature matchings which have been used in literature to derive the location of

an object. Sometimes, a combination of feature matchings are necessary to completely specify a rigid
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Measured features

Point

Surface normal

Line segment

Edge
Planar surface

Quadric surface

Gaussian curvature

Matched to

Point

Planar surface

Surface patch
Surface normal

Line segment
Planar surface

Surface patch

Edge

Planar surface

Quadric surface

Gaussian curvature

Table 1: Known Matching Strategies in Object Localization

transformation.

We have just showed and discussed a general object localization mechanism. There is no common

solution for the implementation now. Each component could be implemented in many different ways.

Some components or relations in this mechanism may be unnecessary in certain implementations. In

the next two sections , a further discussion about sensing system and feature extracting _z matching
strategies will be given.

3 Some Issues

We just showed a general structure of object localization systems. In practice, there are some impor-
tant issues which must be considered when a real localization system is to be designed.

1. Real-time execution: Hierarchical control structure has been defined as a standard for teler-

obot control system architecture [1] and has been adopted by researchers to develop individual

telerobot systems such as systems developed at Goddard [27], University of Michigan [36] and

etc.. The functions of vision system are different at each level. So are the requirements for the

object localization algorithms. Usually the higher the level, the slower the completion rate. See
table 2 for typical completion rates at each level of telerobot control.

At the object task planning level, for example, one of the functions of vision system is to

recognize the environment. The object localization system, as a part of the vision system, is
used to give an approximate measurements of the locations of the objects in the environment.

The execution time is in the minute range. At the E-move level, however, the rate of completion
is in the range of seconds. If a visual-feedback control strategy is used here, the localization

system has to generate updated measurements for the control system to adjust the robot's

movement in the same time frame. Real-time issue will become important. Based on different

timing requirements, the strategies of localization might be also different.

2. Accuracy:. Accuracy is another important issue in object localization. There are two definitions

of accuracy, e.g., absolute accuracy • and relative accuracy A•.

• Absolute accuracy is defined as the difference between a measured value m and it's real
value s. That is, • = m - s;
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Average rate of Average Planning

change in output replanning interval horizon

Servo 1 KHz 1 miUisec. 15 msec.

Primitive 62Hz 16 millisec. 300 msec.

E-Move 8Hz 128 millisec. 2 sec.

Object/task 1 Hz 1 second 30 sec.

Service Bay .1 Hz 10 second > 10 rain.
Mission 0.01 Hz 1.7 minutes > 1 hour

Table 2: The rate of subtask completion at each level of hierarchy. ([1])

• Relative accuracy is defined as the difference between a measured difference and it's real

difference. For example, if the real difference between two points is Ap and the two

measurements on the two points are Sl, s2, then the measured difference is a function

of sl and s2, e.g., Ap' = f(sl,s2), and the relative accuracy of the measurements is

A_ = Ap- Ap'.

High accuracy, especially high absolute accuracy is not always required. For example, accuracy

is not crucial at the beginning of an assembly task, but will be a determining factor in the final

stage of operation. Even at that time, the determining factor is relative accuracy rather then

absolute accuracy.

Absolute accuracy to a large extent depends on the accuracy of the sensing system. But this

does not mean that we do not need a good localization algorithm. A good algorithm should

be insensitive to measurement noises, object distortions and other factors which could influence

the accuracy of the localization.

The achievement of high relative accuracy, on the other hand, does not necessarily depend on

high accurate sensing systems. Human eyes, for example, are not good at locating objects in

the absolute sense, but human have no difficulty picking up an object. Research is shown also

proved this point of view [25]. Therefore, when designing an algorithm, one must evaluate its

performance according to both it's absolute accuracy and relative accuracy, which has been

neglected by some researchers.

3. The type of locatable objects: It is best if the system can locate arbitrary-shaped objects. If

this is difficult, an alternative method is try to find specific detectable features for each object

and store these features in that object model for feature-extraction and matching in localization

process. If such features do not exist for some object, then one should try to make special marks

on the object. Therefore, some guidelines should be given in the component design stage so that

the design is favorable to part grasping and localization by the telerobot system. Sometimes,

very simple modifications made on the part design can greatly improve part localization process.

4. Sensing system: What types of sensing techniques should be used in a localization system?

Where should one install the sensing system? How is the dynamic range of sensing system

determined? These are just some of the issues when one needs to design a sensing system.

Javis [20] has presented an early overview of range finding techniques. Each technique has its

advantages and disadvantages. Image-based sensing provides complete information about the

environment but takes time to process it. Sparse data can be used directly for fast localization
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purpose butneeds a good sensing system for fast data acquisition. Multi-spot sensing is an
example of such system [21]. For the installation, perhaps some sensors should be installed

in fixed locations while others can be put into the robot's moving parts. Newly developed
technologies should be used in localization systems. For example, motorized-zoom and auto-

focus techniques can improve the dynamic range of measurements; VILS techniques can reduce

the size of the whole sensing system. The use of the advanced techniques will have great impact
on the design of object localization system.

4 Feature Extraction & Matching Strategies

As we said, the object localization process basically is a feature matching process. That is, finding a
best estimate of transformation parameters which will align some modeled object features with certain

(perhaps different type of) measured object features. Based on how feature matching is realized, the

object localization algorithms can be broadly divided into two categories: the algorithms which do

not involve any recognition process, and those which have more or less recognition process involved.

We call these two types of algorithms as direct-localization algorithms and recognition-localization
algorithms respectively.

Obviously the second type of algorithms has a higher intelligent level than that of the first ones.

Even within the second type of algorithms, the intelligent levels could be different. Some of them can

establish the matchings within one object, some of them can do it within a group of the same type

of objects, others can match the features within a group of different types of objects. At the highest
level, the algorithm could locate unmodeled objects. To do this, a set of primitive features should
be specified in a database, which will form the basic frames of any object to be constructed. Before

localizing the unknown object, the algorithm must explore the object and establish a model for the
object using the set of primitives.

Each type of algorithm can be further classified according to their sensing methods, the types of

features used for matching, mathematical formulating methods, the types of locatable objects and so
on.

4.1 Direct-Localization

Direct-localization algorithms are mostly used in the situations where either the working environment

is a highly-structured or the position relationships among the objects in the environment have pre-
viously been established proximately or the human beings could provide the assistance as where to

take the required measurements. The telerobotics applications in most space programs meet these
requirements.

Because no recognition is involved, the localization process is quite simple. The extracted features

and model features can be used as inputs for direct computation. The time of localization depends
on the time spent on measurements and feature extraction.

One method proposed by Gunnarsson and Prinz [18, 19] is based on their observation that if a

set of points are measured and these measurements are distributed on the object surfaces, the best

transformation is the one which will make the sum of distances between each measured point and

it's corresponding transformed surface minimal. Their idea leads to a point-surface matching strat-

egy. Their algorithm, when formulated in mathematical terms, becomes a least squares minimization

problem and can be used to locate arbitrarily-shaped objects. Usually an iterative numerical proce-

dure is needed to solve for the problem. The numerical procedure they used is a modified Lagrange

multiplier and Newton-Raphson method. Because a good initial guess can be provided due to the
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fact that the object's approximate location is supposed known, the convergence of the algorithm is

guaranteed in most cases.
Gordon and Seering [17] developed a system which uses striped-light and camera sensing to gather

necessary range data. The system can only locate planar objects. Line-surface matching is used in

their algorithm. The striped-light when projected on the planar surfaces of the object generates

straight-line segments. The scene is then viewed by a camera. The equation of each line segment can

be obtained by analyzing the corresponding image of that line segment viewed by the camera. Three

independent line segments are needed to compute the rotation and translation parameters. The fact

that the line vector is perpendicular to the rotated modeled surface normal vector can be used to

derive the rotation. The algorithm uses quaternions to represent rotation and uses a numerical method

to compute it. They also give a closed-form solution for the rotation when three surfaces sensed are

perpendicular with each other. The calculated rotation is then used to compute the translation.

The same striped-light and camera sensing system is also used by Rutkowski, Benton and etc.

[3, 28]. But their matching strategy is point-surface matching. In their algorithm, the measured

points are from extracted line-segments, either straight or curved. Their method imposes no particular
constraints on the shapes of the object surfaces, as long as the object surfaces can be partitioned into

a collection of primitive surfaces, such as planes, cylinders, or spheres. The computation is carried

out by a repeated location adjustment. The location adjustment is expressed by three quantities:

the rotation center, rotation axis and translation vector. To guarantee a fast convergence of their

algorithm, the center of mass data points is chosen as the rotation center instead of the origin of the

model's coordinate system.
In above methods, if the object is a polygon, at least three surfaces need to be accessed in

order to take enough measurements. Shao, Volz and etc. [29] have implemented an algorithm based

on line-segment line-segment matching, which needs to access only one surface when localizing a

planar object. Their algorithm can locate object which has planar surfaces, quadric surfaces and

revolutionary surfaces. A line range sensor is used to extract line-segment parameters. The line-

segments are either boundary edges or axes. The extraction of only two line-segments are enough to

locate an object. Closed-form formulas are used to compute the position and orientation parameters.

When comparing with these methods, we can find out that all of them have very high measurement

accuracy and fast execution speed. For example, Gordon's system has 2.5 seconds of execution time
and a relative accuracy of 0.002 inches in translation and 0.1 degrees in rotation when a two inch cube

is being located, and is capable of reliably assembling components with little clearance without using
force controlled motion. In Gunnarsson's algorithm, the measurement error is on the same order of

magnitude as the sensor error. These algorithms also have some problems. The problem associated

with stripped-light sensing is that it requires extra light source with special pattern, which sometimes
is inconvenient. The use of spot sensor or line sensor has the problem of multi-measurement, e.g., the

sensor has to be installed on the robot's moving part and be moved together with the robot in order

to take multi-measurement. This will slow down the localization process.

High-level features can also be used to locate objects. For example, Thorne and etc. [35] described

an algorithm which uses features such as the radii or curvatures of a space curve along the curve to

locate an object. The curvatures/¢ or radii p of a space curve can be expressed as a function of the

length 8 of the curve, e.g., k - _(s) (or p = p(s)), which is independent of the coordinates of the
curve and is thus invariant under rotation and translation. The algorithm assumes that there exists a

particular feature line or fingerprint for each object. The feature line could be a certain portion of the

curved edge(s) of the object or a curve on the object surface. A curvature plot along the feature line
can be drawn. In the database, the feature line is specified by a set of discrete points with each point

associates with the information about its coordinate (x, y, z), radius of curvature, curvature, delta

length, and total length. The total length is zero for the first point. The localization is proceeded
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through point-point matching. The method first measures a set of discrete points along the feature
line and then finds a corresponding point for each measured point and a least squares optimization

algorithm is used to find the location parameters. A similar algorithm which uses iso-gaussian (a

curve connecting points of constant gaussian curvature) matching to localize an object was described
by Gunnarsson [18].

4.2 Recognition-Localization

In many applications, the objects could be placed anywhere in the environment. Therefore, if a

measurement is made and some sensed features are extracted, the localization system has no prior

knowledge about which object or which part of the object the sensed features should belong to. In

this case, in order to compute the location of an object, a recognition process is needed, which will

establish the matchings between a set of sensed features and the model features.

There are two popular matching strategies: tree searching and clustering.

In tree searching strategy, if there are k sensed features Si, i = 1...k and lm model features

Mj, j = 1...l,n for object O,_, m = 1-.. w, a searching tree can be constructed for each known object

O,n such that the tree has l,n levels, and each intermediate node has k branches. Each path from root

to leaf represents a potential matching. The total number of possible matchings, or the searching

space for object O,n is lkm, which is very huge. To reduce the searching space, several methods have
been proposed.

One algorithm proposed by Grimson, Lozano-Perez and etc. [15] [16] is to use the local geometrical

constrains such as distance constraint, angle constraint, direction constraint, triple-product constraint

and so on to reduce the searching space. Beginning from the root of the tree down, at each node,

local constraint test is made to see if the sensed features up to that level are consistent with these

constraints. If it is not, the entire subtree is discarded for consideration.

A similar tree searching method is used in Faugeras and Hebert's work [12, 13, 14]. Instead of local

constraints, rigidity is used as the basic constraint during tree search process. Every path from the root

to an intermediate node (level k for instance) represents a partial matching. The algorithm computes
a best rigid transformation Tk up to that level (k). Then Tk is applied to the next unmatched model

primitive Mk+l and only those sensed primitives that are sufficiently close to TkMk+l are considered.

The computations are carried out by least squares optimization techniques. As each new pair of
primitives adds to the partial matching list, the new estimation of transformation has to be started

over again. The algorithm's underlying paradigm is "locating while recognizing" which is different

from the paradigm of "locating after recognizing" used in Grimson and etc.'s algorithm.

Reducing the number of sensed and model features is another important method to speed up the

tree searching process. The use of higher level features can effectively reduce the size of the searching

tree because fewer features are usually adequate. The system developed by Bolles, Horaud and etc.

[9, 10] is such an example. Three different types of edges are used as the primitive features. They

are: straight dihedrals, circular dihedrals, and straight tangentials. They are higher level features:

one pair of matched features can determine all but one of the object's six degrees of freedom.

Clustering is another technique used in recognition-localization algorithms. The principle of clus-

tering is very simple:

For each element in the sensed feature list

for each element in the model feature list

if they are compatible, compute a transformation candidate

put it into cluster space.

The cells with the largest counts are expected to represent the location.
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While the principle is simple, the implementation is not so easy. The high dimensions (six) and

huge space of clustering are just two difficulties. Different methods have been proposed to accom-

modate these problems. Three dimensional clustering, the use of proper size of cells and hierarchical

clustering are some of them [2]. Several systems have been proposed by using the clustering tech-

nique. Linnainma_ etc. [23, 24, 25], Silberberg, Harwood, etc. [31], and Stockman etc. [32, 33, 34]

are typical examples. One property of clustering is the algorithm's parallel structure, which will have

an important impact on the future development of object localization algorithms.

In most algorithms, the least squares optimization is the mathematical tool to estimate the best

transformation if many feature-palm are found. But in many situations, this method is not the only

tool. Bolle, Cooper [5] [6, 7, 8] presented a statistics approach of combining pieces of information to

estimate 3-D complex-object position. They formulate the optimal object localization as a Bayesian

probability estimation problem. The objective is to find the most likely transformation T that maps

the model primitives onto the measured range data. The likelihood p(Y[T) should be maximized

with respect to T, where Y is the measurement data. If _ primitives have been extracted from

range data and matched to model primitives, then p(Y[T) = I-[_--1 p(Yk[T). That means, to arrive a

global optimal solution, the maximum likelihood estimation has to be applied locally. Based on this

analysis, they arrived at a different formula for minimizing the estimation error from the traditional

least squares optimization formula. To arrive an optimal solution, a through analysis of measurement

errors and having a good error model are needed.

5 Summary

We have discussed several object localization methods and strategies. Different levels of telerobot

control have different requirements on the localization system. At the low level, the consideration

of real-time execution and high accuracy is important. At higher level, the use of AI (artificial

intelligence) technology becomes crucial. It seems that a lot of work has to be done in order to

develop a real practical localization system. The issues discussed in section 3 are just few of those

which need to be addressed by future research.
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